Thursday, July 9, 2009

Minimum Volume Embedding


This is another piece of work by the authors of the previously scanned paper. This work is mainly based on the MVU paper, where the graph is embedded with isometry constraints (linear for the Gram matrix) and maximized variance (the trace of the Gram matrix). Therefore the Gram matrix can be obtained via SDP optimization techniques.

But the variance to be maximized is harmful since it might cause the variance in all directions to increase, which is not necessary (as is illustrated in the example of the paper). The author takes the difference of the eigenvalues of the Gram matrix to be optimized
\max \sum_{i= 1}^d \lambda_i - \sum_{i = d+1}^N
where \lambda_i are the eigenvalues of K and K must satisfy the same contraints as MVU.

To solve the problem, the authors proposed an iterative algorithm based on SDP. In each iteration, the eigen vectors are renewed by PCA of the Gram matrix and the Gram matrix is updated with SDP. It can be proved the algorithm will converge to a local minima. This will force those eigen values irrelevant to the embedding to zero and therefore cause a minimum volume embedding.

No comments: